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Abstract

Understanding the reservoir quality (porosity and permeability) in sandstone reservoirs poses a significant problem in petroleum
industries due to their influences on STOOIP, well deliverability in petroleum industries, and reservoir heterogeneity. Core
sedimentology, wireline log analysis, core analysis data, and thin section petrography were used to determine the reservoir quality
of Upper Jurassic Fulmar sandstones from the Blair oil field. The Upper Jurassic Fulmar sandstones of the central part of the North
Sea display variations in grain sizes, bioturbation intensity, and sedimentary structures, indicating differing depositional
environments. These Upper Jurassic Fulmar sandstones were deposited in various sedimentary environments with high porosity
and permeability. These sandstones also demonstrated variations in cement types, with quartz overgrowth being the dominant
cement. Many common controls guide the preservation of high reservoir quality in the Fulmar Formation, some of which are
attributed to the localized presence of grain-coating materials and hydrocarbon emplacement, which may have inhibited quartz
cement and early detection overpressure development, which may have inhibited porosity loss by compaction. The analysis of this
paper can be used to further the understanding of reservoir quality in Jurassic sandstones in the North Sea and can be compared
with different Formations (Fm) in other sedimentary basins.
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1. Introduction

Reservoir quality largely depends on the reservoir’s porosity and permeability (Ningliang et al., (2022)). Determining the porosity
and permeability of any oil and gas field is vital for a reservoir’s entire “life cycle” (Ramm & Bjerlykke (1994)). The porosity and
permeability are determined mainly by the depositional setting and the hydrodynamic conditions, portrayed by the mineralogy,
grain shape, grain size, and sorting (Saiag et al., (2016)). Field data and core analysis can contribute additional data regarding
sand-body geometry and facies distribution (Bjarlykke, 2014).

Reservoir quality can be predicted by combing sediment petrological and diagenetic analysis (Bjarlykke, 2014; Porten et al.,
(2016)). In the North Sea, cementation is known to be the main reason for the reduction in reservoir quality of Jurassic sandstones
at depths > 3000 m (Bowen et al. (2018)). Cementation is an attribute of diagenesis and is influenced by temperature and kinetics
(Schmid et al. (2004)). However, high porosity and permeability in deeply buried sandstone reservoirs can be attributed to factors
limiting cementation and burial compaction (Stricker et al., (2016)). The porosity of a reservoir influences the volume of gas or
oil in place, and permeability influences the rate at which hydrocarbon flow from the reservoir to the wellbore (Worden et al.
(2018a)).

The integration of sedimentology, petrography, wireline (petrophysical), and core analysis is used to understand the depositional
environment and reservoir quality of the Upper Jurassic Fulmar formation in the Blair oil field. Sedimentological studies are
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focused on determining the various processes that led to the formation of sedimentary rocks in both continental and marine
environments (Mannie et al., (2014)). The petrophysical analysis focuses on determining the lithology, porosity, permeability, and
fluid saturation in order to achieve reservoir characterization (Kumar et al., (2018)). Petrography analysis focuses on the use of
thin sections to understand the diagenetic processes influencing the reservoir quality (Maast et al., (2011)).

The Upper Jurassic sandstones of the North Sea have exceptional high porosity and permeability for deeply buried sandstones,
some of which are the Ula, Piper, Brae, and Emerald Formation (Stewart & Faulkner (2008)). However, this paper is concerned
with the Upper Jurassic Fulmar sandstones located in Blair oil field at the central part of the North Sea in well 16/21a-13. The
main objective of this paper is to characterize the cored intervals of well 16/21a-13 by providing a sedimentological understanding
of the reservoir quality and ascertaining the causes of high porosity and permeability in the Upper Jurassic Fulmar sandstones
reservoir from Blair oil field.
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2. Geological Settings
The Blair field is located in the Central Graben of the North Sea and is known to be a prolific hydrocarbon province containing
more than 20 billion barrels of discovered hydrocarbons (Stricker et al. (2016)). Well 16/21a-13 was drilled in 1984 as an appraisal
well to test the extent of the Jurassic sandstone in the Glamis structure. It was discovered that the Upper Jurassic sandstone was
found water wet. However, Paleocene oil accumulation was confirmed through a positive test with rates up to 3500 BOPD (Niazi,
2011), Khan Niazi et al. (2019)). The North Sea rift system is classified as a global super basin (figure 2.1), which straddles the
United Kingdom, Norway, Germany, and Denmark (John and Nick, (2018)).

The rift basin consists of the Viking Graben, Central Graben, Moray Firth, and their neighboring platform areas. The superposition
of these basins in various combinations in the different areas controls the hydrocarbon potential of these basins’ respective sectors
of the North Sea (Ziegler, 1975). The stages that describe the tectonic evolution of the North Sea are the Caledonian geosynclinal
stage (Cambrian-Silurian), Variscan geosynclinal stage (Devonian — Carboniferous), Permo — Triassic intracratonic stage,
Taphrogenic rifting stage (Jurassic — Cretaceous) and Post — rifting intracratonic stage (Tertiary) (Ziegler, 1975). The Central
Graben (figure 2.1) trends in NW-SE direction and consists of two troughs towards east and west of intra-basinal Forties-Montrose
and Josephine Ridge horst blocks, and is more symmetrical compared to the Moray Firth Basin and Viking Graben (Niazi 2011).
The Central Graben is 70 to 130 km wide with an approximate length of 550 km (Stricker et al. 2016).

The shallow marine (shelf or shoreface) and turbidite sandstones of the Upper Jurassic age (Oxfordian-Kimmeridgian) have been
referred to as the Fulmar Formation (Johnson and Stewart, (1985). The Kimmeridge Clay Formation lies over the Fulmar
Formation (figure 2.2) and is dominated by an argillaceous succession encasing a subordinate deeper water sandstone body Shales
of the Kimmeridge Clay Formation and the Upper Cretaceous chalk form the cap rocks (Johnson et al., (1986)). The Upper Jurassic
sandstones are predominantly fine and medium-grained, moderately well sorted, relatively homogeneous, and variably
argillaceous, and were deposited in offshore marine-shelf settings (Brown et al., (1992); Rothwell et al., (1993)).

The tectonic history of the Central Graben created numerous hydrocarbon traps, which were filled with hydrocarbons upon
maturation of the Upper Jurassic Kimmeridge Clay and its equivalent later (Niazi 2011). The Upper Jurassic Fulmar Formation is
a High-Pressure High Target (HP-HT) gas-condensate reservoir and is located in the North Sea rift system (John and Nick, 2018).
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Figure Error! No text of specified style in document..1: Map of the North Sea Rift super basin and the Central Graben area
with main structural elements and major discoveries (after John and Nick, 2018; Brown et al., 1992)
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Figure Error! No text of specified style in document..2: Stratigraphic column of the Central Graben of the North Sea after
Knox & Cordey (1992)

3. Materials and Methods

The drilled cores of the Upper Jurassic Fulmar Sandstones from well 16/21a-13 are in a depth range of 9984-10281 ft. The methods
applied to study and make adequate observations of the data sets of this well will be divided into three categories: petrophysical,
core, petrographic and sedimentological analysis.

L. Petrophysical and core analysis

The dataset contained resistivity logs, caliper logs, gamma-ray (GR) logs, sonic logs, and density logs. The petrophysical data
were loaded into excel, including the core analysis data for well 16/21a-13 at their respective depth.
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Figure Error! No text of specified style in document..3: (a) Cross plot of gamma-ray against density log (b)Cross-plot of
compressional sonic against density.

The lithologies were identified using the Gamma-ray, sonic, and density log cross plots which reveal that there is one shale zone
and two reservoir zones; the shale zone are the black dash circles, and sand zones are the red dash circles (figure 3.1) while the
Shale volume was estimated from the gamma-ray (GR) log using equation 1 (Amigun and Odole (2013)). Where GRmeasured is
the actual gamma-ray signal from any depth, GRsand is the minimum gamma signal taken to represent pure sand, and GRshale is
the maximum gamma signal taken to represent pure shale.

Shale fraction = SimeasuredGRsand

............... Equation 1
GRshale—GRsand
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Density porosity was estimated from the density log using equation 2. Pb is the measured formation density, Pma is the average
density of the rock matrix (2.65g/cm3), and Pf is the density of the interstitial fluid (1.1g/cm3) (Bowen, 2003).

Porosity @ (fraction) :%
ma~bLf

.............................. Equation 2
Sonic porosity was estimated from the porosity log using equation 3. Atc is measured compressional slowness, Atma is the
compressional slowness of the rock matrix (60 us/ft), and Atf is the compressional slowness of the interstitial fluid (185 ps/ft).
Porosity @ (fraction) L Equation 3

Atf_Atma
Density and Core porosity were calibrated against depth to achieve a good correlation in the well. Core porosity and density
porosity yield a coefficient of R? of 0.9025 (figure 3.2).
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Figure Error! No text of specified style in document..4: (a) core porosity and density porosity correlation coefficient (b) core
porosity calibrated with density porosity against the depth.

The quantitative use of the resistivity logs was determined using Archie’s method equation 4 (Archie, 1942). Where Sw is water
saturation, ® is the porosity, Rw is the formation water resistivity (0.03 ohm.m), Rt is the observed bulk resistivity, a is the constant
(taken to be 0.9), m is the cementation factor (take to be 2.2), and n is the saturation exponent (taken to be 2.2) the water saturation
(Khayer et al. (2021)).

1
a*Rw |n
Rtx@™M

Swz[ ................................. Equation 4
Hydrocarbon saturation (Shc) was calculated using equation 5. Where Shc is the hydrocarbon saturation and Sw is the water
saturation.

ShC=1-SW..iiiii Equation 5

The Petrophysical analysis helped identify high and low porosity zones. The Well log data was used to create different cross plots.
These plots were very helpful in identifying poor to excellent reservoir quality zones on the Well log data with the petrographic
data.

1. Sedimentological Analysis

A sedimentary logging sheet was used for logging the cores on a scale of 1:20 for grain size, sedimentary structure, bioturbation,
and color. Nine different lithofacies and six facies associations were identified from the cores and logged (Howell et al. (1996). A
detailed description of each lithofacies was given, including their environment of deposition. Sedlog software was used to create
a graphic lithology of the cores and was grouped into nine different facies based on grain size, sedimentary structure, depositional
environment, and observations.

Il. Petrographic Analysis

Ten petrographic (thin section) samples were taken directly adjacent to plug points for conventional core analysis to ensure that
the petrographic data was tied to the core analysis data. These thin sections represent the different lithofacies logged. Optical
microscopy was first used for mineralogical identification and studying diagenetic features such as feldspar dissolution, which
leads to the generation of secondary porosity. Scanning Electron Microscope (SEM) examination of all samples was undertaken

using Hitachi TM3000 SEM. The SEM analysis optically identifies the grain coating, clay coating, quartz overgrowth, and various
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types of cementation, such as pyrite. The permeability of each thin section was calculated using equation 6 derived from a cross-
plot of core porosity versus core horizontal permeability. Y is permeability, e is the natural logarithm, and x is thin section porosity.

Y=0.0013e%7627% | .. Equation
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4. Results and Discussion

4.1 Depositional Environment and Facie Association of the Upper Jurassic Fulmar Sandstone.

Detailed sedimentary logging of the cores from well 16/21a-13 in the Blair oil field identified nine different lithofacies deposited
in a fluvial-deltaic and shallow marine environment (figure 4.1). The Upper Jurassic Fulmar Formation depositional environment
ranges from shoreface to shallow marine environment, and the lithofacies are differentiated based on lithology, grain size,
sedimentary structures, silt/clay content, and the degree of bioturbation. Three different lithologies were identified in the cores:
sandstone, conglomerates, and shale. The sedimentary structures observed on the logged cores are wave ripple cross-lamination,
horizontal planar lamination, and hummocky cross-stratification. The rate of bioturbation noticed on the cores varied with depth
and was identified as minor, moderate, and intense bioturbation.
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Figure Error! No text of specified style in document..5: Facie description and sedimentary log of well 16/21a-13 of the Upper
Jurassic Formation Sandstone.

The succession of the Upper Jurassic Fulmar sandstones belongs to the Humber group, and they consist of Brae, Heather, Piper,
Seeley, Emerald, Kimmeridge Clay, and Fulmar formation (Worden & Burley (2009)). The identified facie association within the
Upper Jurassic Fulmar Sandstone of well 16/21a-13 in the Blair oil field are the upper shoreface facies association, middle
shoreface facies association, transition zone, and offshore facie association facie association.

The upper shoreface facies association is composed of well-sorted fine to medium sand grains, “clean” bioturbated sandstone, and
massive sandstone (figure 4.2b) (Howell et al. (1996)). These lithofacies also consist of primary sedimentary structures such as
parallel lamination, cross-stratification, swales laminae-sets, and flow ripple cross lamination (figure 4.2a) (Burns et al. 2005).
Facie 2, 4, and 5 have sedimentary textures of the upper shoreface association, such as grain size, sedimentary structures
(hummaocky cross-stratification and horizontal planar laminations), and bioturbation (figure 4.1).

The Middle shoreface facies association (Facies 7 and 8) represents high wave and current energy, which is indicated by the low
clay content and the presence of horizontal and low-angle (swales or hummocky cross-stratification). Other indicators of high
energy conditions in these facies are the presence of winnowed shells and pebble lags (Burns et al., (2005); Dey & Sen, (2017)).
The lower shoreface facies association (Facie 6) consists of moderately to well-sorted, very fine, and medium to very coarse sand
grains with preserved sedimentary structures such as hummocky cross-stratification (figure 1)(Cannon & Gowland (1996)). The
high rate of bioturbation led to an interpretation that the sediments were deposited in an open-marine lower shoreface setting
(Howell et al., 1996; Aliyuda et al. (2018)). The offshore and transition zone facie association (Facie 1 and 9) consists of
argillaceous sandstones, micaceous and silty sandstones (figure 4.1) (Aliyuda et al. 2018), and they are considered to be very
heterolithic in nature (Gowland, 1996). The bioturbation indices (BI) are lower than the previous association, indicating that rapid
sedimentation occurred (Browne et al., (2018)). (Howell et al. 1996) stated a lack of primary sedimentary structures, such as
hummocky cross-stratification within the sandstone beds, indicating that storm events occurred in low frequency and low
magnitude. However, Gowland (1996) stated that rare sandstone event beds displayed hummocky cross-stratification (Facie 1),
supporting the reduced current energy theory.
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Figure Error! No text of specified style in document..6: Shows the depositional elements present in the cored intervals of
Upper Jurassic Fulmar formation of well 16/21a-13 in Blair oil field (a) the black arrow points towards a hummocky cross-
bedding (b) the pebbles are quartz; they appear to be poorly sorted, well rounded (blue arrows) and semi-opaque (c) the
pebbles are sub-angular, moderately sorted with the lens of fine-grain sandstones deposited on a low angle bedform (black
dashed circle)

4.2 Diagenesis

The Upper Jurassic Fulmar sandstones contain varieties of authigenic minerals (calcite, pyrite, feldspar, dolomite, and predecessor
minerals of chert) resulting from diagenetic reactions which take place both during early burial and deep burial (Burns et al. 2005).
Late diagenetic reactions are considered the dominant process for deeply buried Fulmar sandstones (Wilkinson et al. (2014a)).
The Upper Jurassic Fulmar sandstone in well 16/21a-13 from Blair oil field showed various factors influencing the reservoir
quality, such as pyrite cement (Pc) (figure 4.3), barite cement (Bc) (figure 4.4a), kaolinite (K) (figure 4.5a) and quartz overgrowth
(Qo) (figure 4.5b). The Upper Jurassic Fulmar sandstones have exceptional reservoir quality even at significant burial depths for
early cementation and overpressure development (Burns et al. 2005). Most Jurassic sandstones in the North Sea have undergone
early diagenesis, which results from rapid burial in a closed system and a dispersed or regional concentration of authigenic minerals
(Kuhn et al. (2008)). Further petrographic analysis showed that feldspar dissolution (secondary porosity) is widespread in the
Fulmar sandstones, constituting about 30% of the total porosity (Burns et al. 2005). Well 16/21a-13 showed that the Upper Jurassic
Fulmar formation has porosity values ranging between 8% to 21% and permeability values ranging between 0.3 to 4000 (mD) in
the Blair oil field (Table 4.1), which can be attributed to pyrite cement, Barite cement, and kaolinite occluding porosity fig such
reduction in porosity and permeability makes it difficult to extract oil from the reservoir (Wilkinson et al. 2014a).

Figure Error! No text of specified style in document..7: (a) Optical microscope showing Pyrite cement (Pc) at a depth of
10098ft. (b) SEM analysis of the pyrite cement occluding porosity as shown by the red box.

4.3 Effect of quartz overgrowth on reservoir quality
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Quartz overgrowth is a syntaxial quartz overgrowth larger than 20 um in optical continuity with the detrital quartz grain at
temperatures greater than 70° C, and they occur where grain coats like micro-quartz and clay coats are absent (figure 4.5b)
(Harwood et al. (2013)). In deeply buried sandstone reservoirs in the North Sea, quartz overgrowth and carbonate cement are the
principal causes of poor reservoir quality (Worden et al., (2012); Harwood et al., 2013). Quartz cementation develops from an
increase in temperature as burial depth increases. However, the precipitation of quartz is also a function of the surface area
available for quartz cementation, and as quartz cement fills the pores, the surface area decreases (Howell et al., 1996; Harwood et
al., 2013).

4.4 Plagioclase-feldspar Occurrence and dissolution

Based on petrographic evidence (figure 4.5b), the Fulmar Formation contains about 35% feldspar, and several studies have
demonstrated the creation of secondary porosity through the dissolution of k-feldspars (Scotchman (2006); Wilkinson et al.
(2006)). The Mesozoic sandstones within the North Sea are arkosic, and studies on the Fulmar formation, Pentland formation, and
Skagerrak formation have recorded significant feldspar dissolution during burial (Wilkinson et al. (1997), (2001), (2014b)).
Feldspar dissolution in deeply-buried Upper Jurassic Fulmar formation significantly affects reservoir quality Bowen et al. (2018).

10139.3_0025 N x100 1mm X

Figure Error! No text of specified style in document..8: (a) SEM analysis showing Barite cement (Bc) at a depth of 10139ft
occluding porosity. (b) The Barite cement precipitated after quartz cementation.

N ¥00 200um -
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Figure Error! No text of specified style in document..9: (a) SEM analysis showing kaolinite (K) at a depth of 10072ft
occluding porosity. (b) Minerals identified using optical microscopy are opaque mineral (Om), Plagioclase Feldspar (twining
structure), and Quartz overgrowth (Qo).

4.5 Effects of clay coating on reservoir quality

Clays play a crucial role in the variability of reservoir quality in Jurassic sandstones in the Central Graben of the UK North Sea
and are well known to enhance porosity at depths greater than 10,000 ft in deeply buried Fulmar sandstones despite mechanical
compaction (Raghavan, 2018). However, the authigenic clay minerals present in the Fulmar formation are chlorite and illite
minerals (Wilkinson et al. 2014a; Wooldridge et al. (2018)). Petrographic analysis shows that the authigenic clay mineral in the
Upper Jurassic Fulmar formation is illite and has been seen coating the grain rim of quartz grain (figure 4.6), thus preventing
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quartz overgrowth (Bowen et al. 2018). The authigenic illite is considered to have been precipitated due to feldspar dissolution in
the Upper Jurassic Fulmar formation (Bowen et al., 2018).

. Thin Thin section Core  |Core Vertical C_ore Density | Sonic Water
Facies . . ... | Horizontal . . .
Depth (ft) Code section N porosity | Permeability Permeabilit Porosity| porosity |Saturation

Porosity |Permeability|  (op) (mD) D) Y () | (@) (%)

1060.4 F7 7.89 0.5 12.1 0.28 0.54 9.7 20.6 0.15
1064.2-10079 | F3 16.63 617 17.6 2590 3807 17.25 11.6 0.14
10087 F4 18.33 1536.8 19.5 2410 4420 16.72 10.7 0.15
10089 F2 10.32 3.4 8.66 273 166 13.59 5.6 0.16
10095 - 10124.2| F4 15.18 328 17.8 3304.6 2524 17.06 9.6 0.14
10130 F6 14.07 59.5 18.5 1670 2410 17.04 10.1 0.14
10139.3 F9 16.92 521.8 14.5 6.7 15 11.65 11.6 0.14

Table Error! No text of specified style in document..1: Displays all petrographic data and related wireline and core-analysis
data of each sample at their respective depth in the Upper Jurassic Fulmar Formation of Blair oil Field in well 16/21a-13.

Figure Error! No text of specified style in document..10: Minerals identified using optical microscopy are opaque mineral
(Om), Plagioclase Feldspar (twining structure), Quartz overgrowth (Qo), Kaolinite (K), and Clay coats (Co) around rims of

4.6 Petrophysical analysis

quartz grain at a depth of 10143ft.

The GR, density, and sonic logs are used to mark various lithologies (red dashed lines) encountered in well 16/21a-13 of Blair oil
field (figure 4.7). Depths from 10084 to 10280 ft are sandstones with low gamma, and sonic responses figure 4.7. The wireline
log response also indicates that there are high gamma (162.38 to 293 API in figure 4.7a and sonic compressional (99 to 117 us/ft
in figure 4.7¢) values from the wireline data within the depth range of 10010 to 10084 ft, this marks the shale region (Kimmeridge
clay) in the well, which means that the base of the shale line is 10084 ft and it marks the transition from shale to sandstone. The
effective water saturation in the Upper Jurassic Fulmar sandstone has an average value of 0.3 (table 4.1). Depths greater than
10084 ft are sandstones of various grain sizes and densities, as seen on the density log response (figure 4.7¢). In the shale zone,
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resistivity values range from 3 to 5.7 ohm.m. density log values range from 2.3 to 2.54 g/cm3 with an average density porosity of
11.73% and average sonic porosity value of 33%. In the sandstone zone, low gamma (23 to 47.78 API) and low sonic
compressional (64.88 to 76.88 ps/ft) values are observed at depths greater than 10084 to 10250 ft, and resistivity values range
from 3.18 to 11 ohm.m, density log values range from 2.41 to 2.79 g/cm3 with an average density porosity of 10.24% and average
sonic porosity of 6.27% (table 4.1). However, there is a gamma spike within 10160 to 10174 ft, and detailed logging showed that
the region is not a shale zone but a clay-rich sandstone. Also, the presence of oil-bearing sandstones is indicated by high resistivity
(> 9 ohm.m) and average water saturation of 0.36 (figure 4.7h).

4.7 Influence of oil emplacement on reservoir quality

Several published articles have concluded that sandstone diagenesis is inhibited by oil in sandstone reservoirs (Figure 4.7) (Worden
et al. (2010); Wilkinson & Haszeldine (2011); Ershadi et al. (2015)). However, contemporary authors claim that oil emplacement
in sandstone reservoirs does not inhibit quartz overgrowth, based on various fluid inclusion data (Lander & Walderhaug (1999);
Aase & Walderhaug (2005)). The Fulmar formation is an unusually homogenous sandstone lacking internal barriers to fluid flow
such as shale units and has a specific grain-size variation; invariably, oil fills the sandstone below the top seal, thereby preserving
the highest porosity by inhibiting cementation and chemical compaction (figure 4.7) (Wilkinson and Haszeldine (2011)). A
maximum hydrocarbon-filled porosity value of about 0.16 (16%) and a maximum water-filled porosity value of 0.09 (9%) were
estimated for the Upper Jurassic Fulmar Formation in the Blair Field well 16/21a-13 figure 4.8. Therefore, this analysis supports
the debate that diagenesis in oil-wet sandstones (figure 4.8) is greatly influenced by the presence of oil than in water-wet sandstones
because the surface of the quartz grains is coated with water (Worden et al. 1998).
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Figure Error! No text of specified style in document..11: Derived petrophysical log delineating the petrophysical properties of
the Upper Jurassic Formation.
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Figure Error! No text of specified style in document..12 shows how much water or hydrocarbon is stored at specific depth
intervals of Upper Jurassic Fulmar sandstones in Blair oil field from well 16/21a-13.

5. Conclusion

Log analysis, core analysis, core description, and petrographic analysis helped determine the reservoir quality of Upper Jurassic
Fulmar sandstones. Reservoir quality of the Fulmar Formation within the Blair Field is influenced by various factors such as
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depositional environment, grain size, sorting, bioturbation rate, diagenesis, oil emplacement, quartz-overgrowth, and feldspar
dissolution. The identified mechanisms responsible for the high porosity and permeability in Upper Jurassic Fulmar sandstones
are oil emplacement, dissolution of plagioclase feldspar, and clay coating. Oil emplacement enhances the reservoir quality by
inhabiting cementation and chemical compaction, the dissolution of potassium feldspar grains enhances the reservoir quality by
generating secondary porosity, and the clay coating around quartz grains in the reservoir inhabits quartz overgrowth. However,
deformation bands and fractures can also influence the reservoir quality by either enhancing or inhibiting fluid flow depending on
whether the reservoir is compartmentalized or non-compartmentalized. Failures to inhibit quartz overgrowth and pyrite cement,
barite cement, and kaolinite filling the pore spaces lead to the destruction of reservoir quality (porosity). The average porosity and
permeability estimated for the Fulmar Formation are based on sedimentological, petrophysical, core, and petrographic results, the
reservoir quality of Upper Jurassic Fulmar sandstones in Blair oil field is good.
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